Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Meeting Report: Moving Upstream-Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making

Tracey J. Woodruff, Lauren Zeise, Daniel A. Axelrad, Kathryn Z. Guyton, Sarah Janssen, Mark Miller, Gregory G. Miller, Jackie M. Schwartz, George Alexeeff, Henry Anderson, Linda Birnbaum, Frederic Bois, Vincent James Cogliano, Kevin Crofton, Susan Y. Euling, Paul M. D. Foster, Dori R. Germolec, Earl Gray, Dale B. Hattis, Amy D. Kyle, Robert W. Luebke, Michael I. Luster, Chris Portier, Deborah C. Rice, Gina Solomon, John Vandenberg and R. Thomas Zoeller
Environmental Health Perspectives
Vol. 116, No. 11 (Nov., 2008), pp. 1568-1575
Stable URL: http://www.jstor.org/stable/25148462
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Background: Assessing adverse effects from environmental chemical exposure is integral to public health policies. Toxicology assays identifying early biological changes from chemical exposure are increasing our ability to evaluate links between early biological disturbances and subsequent overt downstream effects. A workshop was held to consider how the resulting data inform consideration of an "adverse effect" in the context of hazard identification and risk assessment. Objectives: Our objective here is to review what is known about the relationships between chemical exposure, early biological effects (upstream events), and later overt effects (downstream events) through three case studies (thyroid hormone disruption, antiandrogen effects, immune system disruption) and to consider how to evaluate hazard and risk when early biological effect data are available. Discussion: Each case study presents data on the toxicity pathways linking early biological perturbations with downstream overt effects. Case studies also emphasize several factors that can influence risk of overt disease as a result from early biological perturbations, including background chemical exposures, underlying individual biological processes, and disease susceptibility. Certain effects resulting from exposure during periods of sensitivity may be irreversible. A chemical can act through multiple modes of action, resulting in similar or different overt effects. Conclusions: For certain classes of early perturbations, sufficient information on the disease process is known, so hazard and quantitative risk assessment can proceed using information on upstream biological perturbations. Upstream data will support improved approaches for considering developmental stage, background exposures, disease status, and other factors important to assessing hazard and risk for the whole population.

Page Thumbnails

  • Thumbnail: Page 
1568
    1568
  • Thumbnail: Page 
1569
    1569
  • Thumbnail: Page 
1570
    1570
  • Thumbnail: Page 
1571
    1571
  • Thumbnail: Page 
1572
    1572
  • Thumbnail: Page 
1573
    1573
  • Thumbnail: Page 
1574
    1574
  • Thumbnail: Page 
1575
    1575