Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genetic Structure of Arbuscular Mycorrhizal Populations in Fallow and Cultivated Soils

Søren Rosendahl and Hans B. Matzen
The New Phytologist
Vol. 179, No. 4 (Sep., 2008), pp. 1154-1161
Published by: Wiley on behalf of the New Phytologist Trust
Stable URL: http://www.jstor.org/stable/25150536
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genetic Structure of Arbuscular Mycorrhizal Populations in Fallow and Cultivated Soils
Preview not available

Abstract

The impact of fallowing on the genetic structure of arbuscular mycorrhizal fungi (AMF) was studied by hierarchical sampling of spores from four plots in a fallow and a cultivated field. A nested multiplex PCR approach was used to assign the spores to genotypes. Variable introns of the two protein-coding genes GmFOX2 and GmTOR2 were used as co-dominant genetic markers together with the large subunit (LSU) rDNA. The gene diversity and genetic structure of Glomus mosseae, Glomus geosporum and Glomus caledonium were compared within and between the fields. Spores of G. caledonium and G. geosporum were more abundant in the cultivated field, whereas G. mosseae was more frequent in the fallow field. The number of genotypes was not different between the two fields. Analysis of gene diversity of G. caledonium in the fallow field indicated that a larger part of the heterogeneity could be attributed to variation between plots rather than subplots, suggesting that the lack of soil cultivation resulted in more heterogeneous population genetic structures. Analyses of haplotype networks of the fungi suggested a subdivision of G. mosseae haplotypes between the two fields, whereas no such division was seen in G. geosporum and G. caledonium. The results show that agricultural practices differently affect both the abundance and the population structure of different AMF species.

Page Thumbnails

  • Thumbnail: Page 
1154
    1154
  • Thumbnail: Page 
1155
    1155
  • Thumbnail: Page 
1156
    1156
  • Thumbnail: Page 
1157
    1157
  • Thumbnail: Page 
1158
    1158
  • Thumbnail: Page 
1159
    1159
  • Thumbnail: Page 
1160
    1160
  • Thumbnail: Page 
1161
    1161