Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Reduction in Mutation Frequency by Very Low-Dose Gamma Irradiation of Drosophila melanogaster Germ Cells

Keiji Ogura, Junji Magae, Yasushi Kawakami and Takao Koana
Radiation Research
Vol. 171, No. 1 (Jan., 2009), pp. 1-8
Stable URL: http://www.jstor.org/stable/25167842
Page Count: 8
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Reduction in Mutation Frequency by Very Low-Dose Gamma Irradiation of Drosophila melanogaster Germ Cells
Preview not available

Abstract

To determine whether the linear no-threshold (LNT) model for stochastic effects of ionizing radiation is applicable to very low-dose radiation at a low dose rate, we irradiated immature male germ cells of the fruit fly, Drosophila melanogaster, with several doses of ⁶⁰Co γ rays at a dose rate of 22.4 mGy/h. Thereafter, we performed the sex-linked recessive lethal mutation assay by mating the irradiated males with nonirradiated females. The mutation frequency in the group irradiated with 500 μGy was found to be significantly lower than that in the control group (P < 0.01), whereas in the group subjected to 10 Gy irradiation, the mutation frequency was significantly higher than that in the control group (P < 0.03). A J-shaped dose-response relationship was evident. Molecular experiments using DNA microarray and quantitative reverse transcription PCR indicated that several genes known to be expressed in response to heat or chemical stress and grim, a positive regulator of apoptosis, were up-regulated immediately after irradiation with 500 μGy. The involvement of an apoptosis function in the non-linear dose-response relationship was suggested.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8