Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

What Are We Learning from Simulating Wall Turbulence?

Javier Jiménez and Robert D. Moser
Philosophical Transactions: Mathematical, Physical and Engineering Sciences
Vol. 365, No. 1852, Scaling and Structure in High Reynolds Number Wall-Bounded Flows (Mar. 15, 2007), pp. 715-732
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/25190465
Page Count: 18
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
What Are We Learning from Simulating Wall Turbulence?
Preview not available

Abstract

The study of turbulence near walls has experienced a renaissance in the last decade, largely owing to the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are essentially independent of the outer flow, and there is a family of numerically exact nonlinear structures that account for about half of the energy production and dissipation. The rest can be modelled by their unsteady bursting. Many characteristics of the wall layer, such as the dimensions of the dominant structures, are well predicted by those models, which were essentially completed in the 1990s after the increase in computer power made the kinematic simulations of the late 1980s cheap enough to undertake dynamic experiments. Today, we are at the early stages of simulating the logarithmic (or overlap) layer, and a number of details regarding its global properties are becoming clear. For instance, a finite Reynolds number correction to the logarithmic law has been validated in turbulent channels. This has allowed upper and lower limits of the overlap region to be clarified, with both upper and lower bounds occurring at much larger distances from the wall than commonly assumed. A kinematic picture of the various cascades present in this part of the flow is also beginning to emerge. Dynamical understanding can be expected in the next decade.

Page Thumbnails

  • Thumbnail: Page 
715
    715
  • Thumbnail: Page 
716
    716
  • Thumbnail: Page 
717
    717
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724
  • Thumbnail: Page 
725
    725
  • Thumbnail: Page 
726
    726
  • Thumbnail: Page 
727
    727
  • Thumbnail: Page 
728
    728
  • Thumbnail: Page 
729
    729
  • Thumbnail: Page 
730
    730
  • Thumbnail: Page 
731
    731
  • Thumbnail: Page 
732
    732