Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Emergence of Gynodioecy in Wild Beet (Beta vulgaris SSP. maritima L.): A Genealogical Approach Using Chloroplastic Nucleotide Sequences

Stéphane Fénart, Pascal Touzet, Jean-François Arnaud and Joël Cuguen
Proceedings: Biological Sciences
Vol. 273, No. 1592 (Jun. 7, 2006), pp. 1391-1398
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/25223461
Page Count: 8
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Emergence of Gynodioecy in Wild Beet (Beta vulgaris SSP. maritima L.): A Genealogical Approach Using Chloroplastic Nucleotide Sequences
Preview not available

Abstract

Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male sterility, wild beet Beta vulgaris ssp. maritima exhibits a minority of sterilizing cytoplasms among numerous non-sterilizing ones. Many studies on population genetics have explored the molecular diversity of different CMS cytoplasms, but questions remain concerning their evolutionary dynamics. In this paper we report one of the first investigations on phylogenetic relationships between CMS and non-CMS lineages. We investigated the phylogenetic relationships between 35 individuals exhibiting different mitochondrial haplotypes. Relying on the high linkage disequilibrium between chloroplastic and mitochondrial genomes, we chose to analyse the nucleotide sequence diversity of three chloroplastic fragments (trnK intron, trnD-trnT and trnL-trnF intergenic spacers). Nucleotide diversity appeared to be low, suggesting a recent bottleneck during the evolutionary history of B. vulgaris ssp. maritima. Statistical parsimony analyses revealed a star-like genealogy and showed that sterilizing haplotypes all belong to different lineages derived from an ancestral non-sterilizing cytoplasm. These results suggest a rapid evolution of male sterility in this taxon. The emergence of gynodioecy in wild beet is confronted with theoretical expectations, describing either gynodioecy dynamics as the maintenance of CMS factors through balancing selection or as a constant turnover of new CMSs.

Page Thumbnails

  • Thumbnail: Page 
1391
    1391
  • Thumbnail: Page 
1392
    1392
  • Thumbnail: Page 
1393
    1393
  • Thumbnail: Page 
1394
    1394
  • Thumbnail: Page 
1395
    1395
  • Thumbnail: Page 
1396
    1396
  • Thumbnail: Page 
1397
    1397
  • Thumbnail: Page 
1398
    1398