Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

An Event-Based Model of Superspreading in Epidemics

Alex James, Jonathan W. Pitchford and Michael J. Plank
Proceedings: Biological Sciences
Vol. 274, No. 1610 (Mar. 7, 2007), pp. 741-747
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/25223839
Page Count: 7
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
An Event-Based Model of Superspreading in Epidemics
Preview not available

Abstract

Many recent disease outbreaks (e.g. SARS, foot-and-mouth disease) exhibit superspreading, where relatively few individuals cause a large number of secondary cases. Epidemic models have previously treated this as a demographic phenomenon where each individual has an infectivity allocated at random from some distribution. Here, it is shown that superspreading can also be regarded as being caused by environmental variability, where superspreading events (SSEs) occur as a stochastic consequence of the complex network of interactions made by individuals. This interpretation based on SSEs is compared with data and its efficacy in evaluating epidemic control strategies is discussed.

Page Thumbnails

  • Thumbnail: Page 
741
    741
  • Thumbnail: Page 
742
    742
  • Thumbnail: Page 
743
    743
  • Thumbnail: Page 
744
    744
  • Thumbnail: Page 
745
    745
  • Thumbnail: Page 
746
    746
  • Thumbnail: Page 
747
    747