Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation

Masahiro M. Kanaoka, Lynn Jo Pillitteri, Hiroaki Fujii, Yuki Yoshida, Naomi L. Bogenschutz, Junji Takabayashi, Jian-Kang Zhu and Keiko U. Torii
The Plant Cell
Vol. 20, No. 7 (Jul., 2008), pp. 1775-1785
Stable URL: http://www.jstor.org/stable/25224288
Page Count: 11
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation
Preview not available

Abstract

Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.

Page Thumbnails

  • Thumbnail: Page 
[1775]
    [1775]
  • Thumbnail: Page 
1776
    1776
  • Thumbnail: Page 
1777
    1777
  • Thumbnail: Page 
1778
    1778
  • Thumbnail: Page 
1779
    1779
  • Thumbnail: Page 
1780
    1780
  • Thumbnail: Page 
1781
    1781
  • Thumbnail: Page 
1782
    1782
  • Thumbnail: Page 
1783
    1783
  • Thumbnail: Page 
1784
    1784
  • Thumbnail: Page 
1785
    1785