Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Isoprenylcysteine Methylation and Demethylation Regulate Abscisic Acid Signaling in Arabidopsis

David H. Huizinga, Olutope Omosegbon, Bilal Omery and Dring N. Crowell
The Plant Cell
Vol. 20, No. 10 (Oct., 2008), pp. 2714-2728
Stable URL: http://www.jstor.org/stable/25224376
Page Count: 15
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Isoprenylcysteine Methylation and Demethylation Regulate Abscisic Acid Signaling in Arabidopsis
Preview not available

Abstract

Isoprenylated proteins bear an isoprenylcysteine methyl ester at the C terminus. Although isoprenylated proteins have been implicated in meristem development and negative regulation of abscisic acid (ABA) signaling, the functional role of the terminal methyl group has not been described. Here, we show that transgenic Arabidopsis thaliana plants overproducing isoprenylcysteine methyltransferase (ICMT) exhibit ABA insensitivity in stomatal closure and seed germination assays, establishing ICMT as a negative regulator of ABA signaling. By contrast, transgenic plants overproducing isoprenylcysteine methylesterase (ICME) exhibit ABA hypersensitivity in stomatal closure and seed germination assays. Thus, ICME is a positive regulator of ABA signaling. To test the hypothesis that ABA signaling is under feedback regulation at the level of isoprenylcysteine methylation, we examined the effect of ABA on ICMT and ICME gene expression. Interestingly, ABA induces ICME gene expression, establishing a positive feedback loop whereby ABA promotes ABA responsiveness of plant cells via induction of ICME expression, which presumably results in the demethylation and inactivation of isoprenylated negative regulators of ABA signaling. These results suggest strategies for metabolic engineering of crop species for drought tolerance by targeted alterations in isoprenylcysteine methylation.

Page Thumbnails

  • Thumbnail: Page 
[2714]
    [2714]
  • Thumbnail: Page 
2715
    2715
  • Thumbnail: Page 
2716
    2716
  • Thumbnail: Page 
2717
    2717
  • Thumbnail: Page 
2718
    2718
  • Thumbnail: Page 
2719
    2719
  • Thumbnail: Page 
2720
    2720
  • Thumbnail: Page 
2721
    2721
  • Thumbnail: Page 
2722
    2722
  • Thumbnail: Page 
2723
    2723
  • Thumbnail: Page 
2724
    2724
  • Thumbnail: Page 
2725
    2725
  • Thumbnail: Page 
2726
    2726
  • Thumbnail: Page 
2727
    2727
  • Thumbnail: Page 
2728
    2728