If you need an accessible version of this item please contact JSTOR User Support

Plots of High-Dimensional Data

D. F. Andrews
Biometrics
Vol. 28, No. 1, Special Multivariate Issue (Mar., 1972), pp. 125-136
DOI: 10.2307/2528964
Stable URL: http://www.jstor.org/stable/2528964
Page Count: 12
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Plots of High-Dimensional Data
Preview not available

Abstract

A method of plotting data of more than two dimensions is proposed. Each data point, $x = (x_1, \cdots , x_k$), is mapped into a function of the form $$f_x(t) = x_1/\sqrt{2} + x_2 \text{sin} t + x_3 cos t + x_4 \text{sin} 2t + x_5 \text{cos} 2t + \cdots,$$ and the function is plotted on the range -$\pi$ < t < $\pi$. Some statistical properties of the method are explored. The application of the method is illustrated with an example from anthropology.

Page Thumbnails

  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136