Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Analysis of Covariance Using the Rank Transformation

W. J. Conover and Ronald L. Iman
Biometrics
Vol. 38, No. 3, Special Issue: Analysis of Covariance (Sep., 1982), pp. 715-724
DOI: 10.2307/2530051
Stable URL: http://www.jstor.org/stable/2530051
Page Count: 10
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Analysis of Covariance Using the Rank Transformation
Preview not available

Abstract

The rank transformation refers to the replacement of data by their ranks, with a subsequent analysis using the usual normal theory procedure, but calculated on the ranks rather than on the data. Rank transformation procedures have previously been shown by the authors to have properties of robustness and power in both regression and analysis of variance. It seems natural to consider the use of the rank transformation in analysis of covariance, which is a combination of regression and analysis of variance. In this paper the rank transformation approach to analysis of covariance is presented and examined. Comparisons are made with the rank transformation procedure given by Quade (1967, Journal of the American Statistical Association 62, 1187-1200), and some 'standard' data sets are used to compare the results of these two procedures. A Monte Carlo simulation study examines the behavior of these methods under the null hypothesis and under alternative hypotheses, with both normal and nonnormal distributions. All results are compared with the usual analysis of covariance procedure on the basis of robustness and power.

Page Thumbnails

  • Thumbnail: Page 
715
    715
  • Thumbnail: Page 
716
    716
  • Thumbnail: Page 
717
    717
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724