Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Using Latent Class Models to Characterize and Assess Relative Error in Discrete Measurements

Mark A. Espeland and Stanley L. Handelman
Biometrics
Vol. 45, No. 2 (Jun., 1989), pp. 587-599
DOI: 10.2307/2531499
Stable URL: http://www.jstor.org/stable/2531499
Page Count: 13
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Using Latent Class Models to Characterize and Assess Relative Error in Discrete Measurements
Preview not available

Abstract

Whenever a definitive standard is not available to mark accuracy in a classification process, discrete measurement error can be discussed only in relative terms. If strong assumptions concerning the underlying discrete processes can be made, latent class models allow one to characterize patterns of agreement/disagreement among raters while simultaneously producing "consensus" estimates of prevalence. A hypothetical definitive standard serves as the latent factor. The discrete data are treated as incomplete and log-linear models can be used to parameterize latent class models and extensions of latent class models. Data from the radiographic diagnosis of dental caries by five dentists were explored to estimate prevalence, assess relative error, and examine the validity of several traditional assumptions concerning diagnostic reliability. Latent class analysis allowed a more detailed description of diagnostic error than provided by commonly used summary statistics.

Page Thumbnails

  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599