Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Significance Testing for Correlated Binary Outcome Data

Bernard Rosner and Roy C. Milton
Biometrics
Vol. 44, No. 2 (Jun., 1988), pp. 505-512
DOI: 10.2307/2531863
Stable URL: http://www.jstor.org/stable/2531863
Page Count: 8
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Significance Testing for Correlated Binary Outcome Data
Preview not available

Abstract

Multiple logistic regression is a commonly used multivariate technique for analyzing data with a binary outcome. One assumption needed for this method of analysis is the independence of outcome for all sample points in a data set. In ophthalmologic data and other types of correlated binary data, this assumption is often grossly violated and the validity of the technique becomes an issue. A technique has been developed (Rosner, 1984) that utilizes a polychotomous logistic regression model to allow one to look at multiple exposure variables in the context of a correlated binary data structure. This model is an extension of the beta-binomial model, which has been widely used to model correlated binary data when no covariates are present. In this paper, a relationship is developed between the two techniques, whereby it is shown that use of ordinary logistic regression in the presence of correlated binary data can result in true significance levels that are considerably larger than nominal levels in frequently encountered situations. This relationship is explored in detail in the case of a single dichotomous exposure variable. In this case, the appropriate test statistic can be expressed as an adjusted chi-square statistic based on the 2 X 2 contingency table relating exposure to outcome. The test statistic is easily computed as a function of the ordinary chi-square statistic and the correlation between eyes (or more generally between cluster members) for outcome and exposure, respectively. This generalizes some previous results obtained by Koval and Donner (1987, in Festschrift for V. M. Joshi, I. B. MacNeill (ed.), Vol. V, 199-224. Amsterdam: D. Reidel) and Rosner (1982, Biometrics 38, 105-114) for the particular case of two subunits per cluster.

Page Thumbnails

  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512