Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Effect of Retrospective Sampling on Binary Regression Models for Clustered Data

John M. Neuhaus and Nicholas P. Jewell
Biometrics
Vol. 46, No. 4 (Dec., 1990), pp. 977-990
DOI: 10.2307/2532442
Stable URL: http://www.jstor.org/stable/2532442
Page Count: 14
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Effect of Retrospective Sampling on Binary Regression Models for Clustered Data
Preview not available

Abstract

Recently a great deal of attention has been given to binary regression models for clustered or correlated observations. The data of interest are of the form of a binary dependent or response variable, together with independent variables Xt,..., Xk, where sets of observations are grouped together into clusters. A number of models and methods of analysis have been suggested to study such data. Many of these are extensions in some way of the familiar logistic regression model for binary data that are not grouped (i.e., each cluster is of size 1). In general, the analyses of these clustered data models proceed by assuming that the observed clusters are a simple random sample of clusters selected from a population of clusters. In this paper, we consider the application of these procedures to the case where the clusters are selected randomly in a manner that depends on the pattern of responses in the cluster. For example, we show that ignoring the retrospective nature of the sample design, by fitting standard logistic regression models for clustered binary data, may result in misleading estimates of the effects of covariates and the precision of estimated regression coefficients.

Page Thumbnails

  • Thumbnail: Page 
977
    977
  • Thumbnail: Page 
978
    978
  • Thumbnail: Page 
979
    979
  • Thumbnail: Page 
980
    980
  • Thumbnail: Page 
981
    981
  • Thumbnail: Page 
982
    982
  • Thumbnail: Page 
983
    983
  • Thumbnail: Page 
984
    984
  • Thumbnail: Page 
985
    985
  • Thumbnail: Page 
986
    986
  • Thumbnail: Page 
987
    987
  • Thumbnail: Page 
988
    988
  • Thumbnail: Page 
989
    989
  • Thumbnail: Page 
990
    990