Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multiple Comparisons for Analyzing Dichotomous Response

Walter W. Piegorsch
Biometrics
Vol. 47, No. 1 (Mar., 1991), pp. 45-52
DOI: 10.2307/2532494
Stable URL: http://www.jstor.org/stable/2532494
Page Count: 8
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available

Abstract

Dichotomous response models are common in many experimental settings. Statistical parameters of interest are typically the probabilities, pi, that an experimental unit will respond at the various treatment levels. Herein, simultaneous procedures are considered for multiple comparisons among these probabilities, with attention directed at construction of simultaneous confidence intervals for various functions of the pi. The inferences are based on the asymptotic normality of the maximum likelihood estimator of pi. Specific applications include all pairwise comparisons and comparisons with a fixed (control) treatment. Monte Carlo evaluations are undertaken to examine the small-sample properties of the various procedures. It is seen that use of the usual estimates of variance consistently leads to less-than-nominal empirical coverage for most sample sizes examined. For very large samples (total size greater than about 300), nominal coverage is achieved. A reformulation of the pairwise comparisons using a construction noted by Beal (1987, Biometrics 43, 941-950) is shown to exhibit generally nominal empirical coverage characteristics, and is recommended for use with small-to-moderate sample sizes.

Page Thumbnails

  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52