Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Efficiency of Regression Estimates for Clustered Data

Lloyd A. Mancl and Brian G. Leroux
Biometrics
Vol. 52, No. 2 (Jun., 1996), pp. 500-511
DOI: 10.2307/2532890
Stable URL: http://www.jstor.org/stable/2532890
Page Count: 12
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Efficiency of Regression Estimates for Clustered Data
Preview not available

Abstract

Statistical methods for clustered data, such as generalized estimating equations (GEE) and generalized least squares (GLS), require selecting a correlation or covariance structure to specify the dependence between observations within a cluster. Valid regression estimates can be obtained that do not depend on correct specification of the true correlation, but inappropriate specifications can result in a loss of efficiency. We derive general expressions for the asymptotic relative efficiency of GEE and GLS estimators under nested correlation structures. Efficiency is shown to depend on the covariate distribution, the cluster sizes, the response variable correlation, and the regression parameters. The results demonstrate that efficiency is quite sensitive to the between- and within-cluster variation of the covariates, and provide useful characterizations of models for which upper and lower efficiency bounds are attained. Efficiency losses for simple working correlation matrices, such as independence, can be large even for small to moderate correlations and cluster sizes.

Page Thumbnails

  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511