Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Random Effects Models in Latent Class Analysis for Evaluating Accuracy of Diagnostic Tests

Yinsheng Qu, Ming Tan and Michael H. Kutner
Biometrics
Vol. 52, No. 3 (Sep., 1996), pp. 797-810
DOI: 10.2307/2533043
Stable URL: http://www.jstor.org/stable/2533043
Page Count: 14
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Random Effects Models in Latent Class Analysis for Evaluating Accuracy of Diagnostic Tests
Preview not available

Abstract

When the results of a reference (or gold standard) test are missing or not error-free, the accuracy of diagnostic tests is often assessed through latent class models with two latent classes, representing diseased or nondiseased status. Such models, however, require that conditional on the true disease status, the tests are statistically independent, an assumption often violated in practice. Consequently, the model generally fits the data poorly. In this paper, we develop a general latent class model with random effects to model the conditional dependence among multiple diagnostic tests (or readers). We also develop a graphical method for checking whether or not the conditional dependence is of concern and for identifying the pattern of the correlation. Using the random-effects model and the graphical method, a simple adequate model that is easy to interpret can be obtained. The methods are illustrated with three examples from the biometric literature. The proposed methodology is also applicable when the true disease status is indeed known and conditional dependence could well be present.

Page Thumbnails

  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810