Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Matching Using Estimated Propensity Scores: Relating Theory to Practice

Donald B. Rubin and Neal Thomas
Biometrics
Vol. 52, No. 1 (Mar., 1996), pp. 249-264
DOI: 10.2307/2533160
Stable URL: http://www.jstor.org/stable/2533160
Page Count: 16
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Matching Using Estimated Propensity Scores: Relating Theory to Practice
Preview not available

Abstract

Matched sampling is a standard technique in the evaluation of treatments in observational studies. Matching on estimated propensity scores comprises an important class of procedures when there are numerous matching variables. Recent theoretical work (Rubin, D. B. and Thomas, N., 1992, The Annals of Statistics 20, 1079-1093) on affinely invariant matching methods with ellipsoidal distributions provides a general framework for evaluationg the operating characteristics of such methods. Moreover, Rubin and Thomas (1992, Biometrika 79, 797-809) uses this framework to derive several analytic approximations under normality for the distribution of the first two moments of the matching variables in samples obtained by matching on estimated linear propensity scores. Here we provide a bridge between these theoretical approximations and actual practice. First, we complete and refine the nomal-based analytic approximations, thereby making it possible to apply these results to practice. Second, we perform Monte Carlo evaluations of the analytic results under normal and nonnormal ellipsoidal distributions, which confirm the accuracy of the analytic approximations, and demonstrate the predictable ways in which the approximations deviate from simulation results when normal assumptions are violated within the ellipsoidal family. Third, we apply the analytic approximations to real data with clearly nonellipsoidal distributions, and show that the thoretical expressions, although derived under artificial distributional conditions, produce useful guidance for practice. Our results delineate the wide range of settings in which matching on estimated linear propensity scores performs well, thereby providing useful information for the design of matching studies. When matching with a particular data set, our theoretical approximations provide benchmarks for expected performance under favorable conditions, thereby identifying matching variables requiring special treatment. After matching is complete and data analysis is at hand, our results provide the variances required to compute valid standard errors for common estimators.

Page Thumbnails

  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264