Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Class of Tests for Linkage Using Affected Pedigree Members

Alice S. Whittemore and Jerry Halpern
Biometrics
Vol. 50, No. 1 (Mar., 1994), pp. 118-127
DOI: 10.2307/2533202
Stable URL: http://www.jstor.org/stable/2533202
Page Count: 10
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Class of Tests for Linkage Using Affected Pedigree Members
Preview not available

Abstract

We describe a class of nonparametric tests for linkage between a marker and a gene assumed to exist and to govern susceptibility to a disease. The tests are formed by assigning a score to each possible pattern of marker allele sharing (identity-by-descent) among affected pedigree members, and then averaging the scores over all patterns compatible with the observed marker genotype and genealogical relationship of the affected members. Different score functions give different tests. One function, which examines marker allele similarity across pairs of affected pedigree members, gives a test similar to that of Fimmers et al. (1989, in Multipoint Mapping and Linkage Based on Affected Pedigree Members: Genetic Analysis Workshop, R. C. Elston, M. A. Spence, S. E. Hodge, and J. W. MacCluer (eds), 123-128; City: Alan R. Liss). A second function examines allele similarity across arbitrary subsets, not just pairs, of affected members. The resulting test can be more powerful than the one based solely on pairs of affected members. The approach has several advantages: it does not require knowledge of the mode of disease inheritance; it does not require unambiguous determination of identity-by-descent at the marker; it does not suffer from variability due to chance allele similarity among affected members who are unrelated, such as spouses; it allows marker genotypes of unaffected members to contribute information on allele sharing among the affected; it permits calculation of exact P-values. Computational requirements limit the tests to many pedigrees with few (<16) affected members.

Page Thumbnails

  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127