Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Performance of Generalized Estimating Equations in Practical Situations

Stuart R. Lipsitz, Garrett M. Fitzmaurice, Endel J. Orav and Nan M. Laird
Biometrics
Vol. 50, No. 1 (Mar., 1994), pp. 270-278
DOI: 10.2307/2533218
Stable URL: http://www.jstor.org/stable/2533218
Page Count: 9
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Performance of Generalized Estimating Equations in Practical Situations
Preview not available

Abstract

Moment methods for analyzing repeated binary responses have been proposed by Liang and Zeger (1986, Biometrika 73, 13-22), and extended by Prentice (1988, Biometrics 44, 1033-1048). In their generalized estimating equations (GEE), both Liang and Zeger (1986) and Prentice (1988) estimate the parameters associated with the expected value of an individual's vector of binary responses as well as the correlations between pairs of binary responses. In this paper, we discuss one-step estimators, i.e., estimators obtained from one step of the generalized estimating equations, and compare their performance to that of the fully iterated estimators in small samples. In simulations, we find the performance of the one-step estimator to be qualitatively similar to that of the fully iterated estimator. When the sample size is small and the association between binary responses is high, we recommend using the one-step estimator to circumvent convergence problems associated with the fully iterated GEE algorithm. Furthermore, we find the GEE methods to be more efficient than ordinary logistic regression with variance correction for estimating the effect of a time-varying covariate.

Page Thumbnails

  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278