Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Criteria for the Validation of Surrogate Endpoints in Randomized Experiments

Marc Buyse and Geert Molenberghs
Biometrics
Vol. 54, No. 3 (Sep., 1998), pp. 1014-1029
DOI: 10.2307/2533853
Stable URL: http://www.jstor.org/stable/2533853
Page Count: 16
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Criteria for the Validation of Surrogate Endpoints in Randomized Experiments
Preview not available

Abstract

The validation of surrogate endpoints has been studied by Prentice (1989, Statistics in Medicine 8, 431-440) and Freedman, Graubard, and Schatzkin (1992, Statistics in Medicine 11, 167-178). We extend their proposals in the cases where the surrogate and the final endpoints are both binary or normally distributed. Letting T and S be random variables that denote the true and surrogate endpoint, respectively, and Z be an indicator variable for treatment, Prentice's criteria are fulfilled if Z has a significant effect on T and on S, if S has a significant effect on T, and if Z has no effect on T given S. Freedman relaxed the latter criterion by estimating PE, the proportion of the effect of Z on T that is explained by S, and by requiring that the lower confidence limit of PE be larger than some proportion, say 0.5 or 0.75. This condition can only be verified if the treatment has a massively significant effect on the true endpoint, a rare situation. We argue that two other quantities must be considered in the validation of a surrogate endpoint: RE, the effect of Z on T relative to that of Z on S, and γZ, the association between S and T after adjustment for Z. A surrogate is said to be perfect at the individual level when there is perfect association between the surrogate and the final endpoint after adjustment for treatment. A surrogate is said to be perfect at the population level if RE is 1. A perfect surrogate fulfills both conditions, in which case S and T are identical up to a deterministic transformation. Fieller's theorem is used for the estimation of PE, RE, and their respective confidence intervals. Logistic regression models and the global odds ratio model studied by Dale (1986, Biometrics 42, 909-917) are used for binary endpoints. Linear models are employed for continuous endpoints. In order to be of practical value, the validation of surrogate endpoints is shown to require large numbers of observations.

Page Thumbnails

  • Thumbnail: Page 
1014
    1014
  • Thumbnail: Page 
1015
    1015
  • Thumbnail: Page 
1016
    1016
  • Thumbnail: Page 
1017
    1017
  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029