Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Minimum Distance Estimation of Mutational Parameters for Quantitative Traits

A. García-Dorado and J. M. Marín
Biometrics
Vol. 54, No. 3 (Sep., 1998), pp. 1097-1114
DOI: 10.2307/2533860
Stable URL: http://www.jstor.org/stable/2533860
Page Count: 18
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Minimum Distance Estimation of Mutational Parameters for Quantitative Traits
Preview not available

Abstract

Individual spontaneous mutations affecting the expression of quantitative traits cannot be systematically identified and, therefore, their effect on the trait cannot be measured. Thus, the rate of occurrence of such mutations and the moments of the probability distribution of the corresponding effects, which are important in evolutionary studies, remain unknown. Here we propose a method to estimate those mutational properties from the observed distribution of the trait mean in a set of independent inbred lines (all derived from the same homozygous base population) in which mutations had been allowed to accumulate randomly. It is based on the use of the well-known minimum distance method, i.e., on the minimization of a distance between the observed distribution and that expected on the basis of a genetic model. We analyze data for three morphological traits (wing length and abdominal and sternopleural bristle number) in Drosophila melanogaster. The method appears to be powerful, giving evolutionary coherent estimates of relevant mutational properties that had not been estimated previously. For all traits, mutational rates were low (smaller than 0.05). Most mutations affecting wing length or abdominal bristle number had negative effect, while almost half of those affecting sternopleural bristle number had positive effect. For each trait, results obtained from data on different generations are in qualitative agreement, although mutational effects seem to depend on generation-specific environmental factors. The method detected between-trait differences in the kurtosis coefficient of the distribution of mutational effects, which varied from values close to that of the normal distribution (wing length) to relatively high values (sternopleural bristle number). It reveals that an important proportion of the mutational input variance of each trait is due to mutations with absolute effect smaller than 0.5 environmental standard deviation units. For morphological traits undergoing weak direct selection, this suggests that large amounts of genetic variance due to genes segregating at intermediate frequencies can be present at the equilibrium.

Page Thumbnails

  • Thumbnail: Page 
1097
    1097
  • Thumbnail: Page 
1098
    1098
  • Thumbnail: Page 
1099
    1099
  • Thumbnail: Page 
1100
    1100
  • Thumbnail: Page 
1101
    1101
  • Thumbnail: Page 
1102
    1102
  • Thumbnail: Page 
1103
    1103
  • Thumbnail: Page 
1104
    1104
  • Thumbnail: Page 
1105
    1105
  • Thumbnail: Page 
1106
    1106
  • Thumbnail: Page 
1107
    1107
  • Thumbnail: Page 
1108
    1108
  • Thumbnail: Page 
1109
    1109
  • Thumbnail: Page 
1110
    1110
  • Thumbnail: Page 
1111
    1111
  • Thumbnail: Page 
1112
    1112
  • Thumbnail: Page 
1113
    1113
  • Thumbnail: Page 
1114
    1114