Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Chimpanzee Locomotor Energetics and the Origin of Human Bipedalism

Michael D. Sockol, David A. Raichlen and Herman Pontzer
Proceedings of the National Academy of Sciences of the United States of America
Vol. 104, No. 30 (Jul. 24, 2007), pp. 12265-12269
Stable URL: http://www.jstor.org/stable/25436288
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Chimpanzee Locomotor Energetics and the Origin of Human Bipedalism
Preview not available

Abstract

Bipedal walking is evident in the earliest hominins [Zollikofer CPE, Ponce de Leon MS, Lieberman DE, Guy F, Pilbeam D, et al. (2005) Nature 434:755-759], but why our unique two-legged gait evolved remains unknown. Here, we analyze walking energetics and biomechanics for adult chimpanzees and humans to investigate the long-standing hypothesis that bipedalism reduced the energy cost of walking compared with our ape-like ancestors [Rodman PS, McHenry HM (1980) Am J Phys Anthropol 52:103-106]. Consistent with previous work on juvenile chimpanzees [Taylor CR, Rowntree VJ (1973) Science 179:186-187], we find that bipedal and quadrupedal walking costs are not significantly different in our sample of adult chimpanzees. However, a more detailed analysis reveals significant differences in bipedal and quadrupedal cost in most individuals, which are masked when subjects are examined as a group. Furthermore, human walking is ≈75% less costly than both quadrupedal and bipedal walking in chimpanzees. Variation in cost between bipedal and quadrupedal walking, as well as between chimpanzees and humans, is well explained by biomechanical differences in anatomy and gait, with the decreased cost of human walking attributable to our more extended hip and a longer hindlimb. Analyses of these features in early fossil hominins, coupled with analyses of bipedal walking in chimpanzees, indicate that bipedalism in early, ape-like hominins could indeed have been less costly than quadrupedal knucklewalking.

Page Thumbnails

  • Thumbnail: Page 
12265
    12265
  • Thumbnail: Page 
12266
    12266
  • Thumbnail: Page 
12267
    12267
  • Thumbnail: Page 
12268
    12268
  • Thumbnail: Page 
12269
    12269