Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Shannon Information of Filtrations and the Additional Logarithmic Utility of Insiders

Stefan Ankirchner, Steffen Dereich and Peter Imkeller
The Annals of Probability
Vol. 34, No. 2 (Mar., 2006), pp. 743-778
Stable URL: http://www.jstor.org/stable/25449886
Page Count: 36
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Shannon Information of Filtrations and the Additional Logarithmic Utility of Insiders
Preview not available

Abstract

The background for the general mathematical link between utility and information theory investigated in this paper is a simple financial market model with two kinds of small traders: less informed traders and insiders, whose extra information is represented by an enlargement of the other agents' filtration. The expected logarithmic utility increment, that is, the difference of the insider's and the less informed trader's expected logarithmic utility is described in terms of the information drift, that is, the drift one has to eliminate in order to perceive the price dynamics as a martingale from the insider's perspective. On the one hand, we describe the information drift in a very general setting by natural quantities expressing the probabilistic better informed view of the world. This, on the other hand, allows us to identify the additional utility by entropy related quantities known from information theory. In particular, in a complete market in which the insider has some fixed additional information during the entire trading interval, its utility increment can be represented by the Shannon information of his extra knowledge. For general markets, and in some particular examples, we provide estimates of maximal utility by information inequalities.

Page Thumbnails

  • Thumbnail: Page 
743
    743
  • Thumbnail: Page 
744
    744
  • Thumbnail: Page 
745
    745
  • Thumbnail: Page 
746
    746
  • Thumbnail: Page 
747
    747
  • Thumbnail: Page 
748
    748
  • Thumbnail: Page 
749
    749
  • Thumbnail: Page 
750
    750
  • Thumbnail: Page 
751
    751
  • Thumbnail: Page 
752
    752
  • Thumbnail: Page 
753
    753
  • Thumbnail: Page 
754
    754
  • Thumbnail: Page 
755
    755
  • Thumbnail: Page 
756
    756
  • Thumbnail: Page 
757
    757
  • Thumbnail: Page 
758
    758
  • Thumbnail: Page 
759
    759
  • Thumbnail: Page 
760
    760
  • Thumbnail: Page 
761
    761
  • Thumbnail: Page 
762
    762
  • Thumbnail: Page 
763
    763
  • Thumbnail: Page 
764
    764
  • Thumbnail: Page 
765
    765
  • Thumbnail: Page 
766
    766
  • Thumbnail: Page 
767
    767
  • Thumbnail: Page 
768
    768
  • Thumbnail: Page 
769
    769
  • Thumbnail: Page 
770
    770
  • Thumbnail: Page 
771
    771
  • Thumbnail: Page 
772
    772
  • Thumbnail: Page 
773
    773
  • Thumbnail: Page 
774
    774
  • Thumbnail: Page 
775
    775
  • Thumbnail: Page 
776
    776
  • Thumbnail: Page 
777
    777
  • Thumbnail: Page 
778
    778