Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Synchronized Delta Oscillations Correlate with the Resting-State Functional MRI Signal

Hanbing Lu, Yantao Zuo, Hong Gu, James A. Waltz, Wang Zhan, Clara A. Scholl, William Rea, Yihong Yang and Elliot A. Stein
Proceedings of the National Academy of Sciences of the United States of America
Vol. 104, No. 46 (Nov. 13, 2007), pp. 18265-18269
Stable URL: http://www.jstor.org/stable/25450408
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Synchronized Delta Oscillations Correlate with the Resting-State Functional MRI Signal
Preview not available

Abstract

Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain.

Page Thumbnails

  • Thumbnail: Page 
18265
    18265
  • Thumbnail: Page 
18266
    18266
  • Thumbnail: Page 
18267
    18267
  • Thumbnail: Page 
18268
    18268
  • Thumbnail: Page 
18269
    18269