Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Recurrent Inversion on the Eutherian X Chromosome

Mario Cáceres, Robert T. Sullivan and James W. Thomas
Proceedings of the National Academy of Sciences of the United States of America
Vol. 104, No. 47 (Nov. 20, 2007), pp. 18571-18576
Stable URL: http://www.jstor.org/stable/25450466
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Recurrent Inversion on the Eutherian X Chromosome
Preview not available

Abstract

Chromosomal inversions have an important role in evolution, and an increasing number of inversion polymorphisms are being identified in the human population. The evolutionary history of these inversions and the mechanisms by which they arise are therefore of significant interest. Previously, a polymorphic inversion on human chromosome Xq28 that includes the FLNA and EMD loci was discovered and hypothesized to have been the result of nonallelic homologous recombination (NAHR) between near-identical inverted duplications flanking this region. Here, we carried out an in-depth study of the orthologous region in 27 additional eutherians and report that this inversion is not specific to humans, but has occurred independently and repeatedly at least 10 times in multiple eutherian lineages. Moreover, inverted duplications flank the FLNA-EMD region in all 16 species for which high-quality sequence assemblies are available. Based on detailed sequence analyses, we propose a model in which the observed inverted duplications originated from a common duplication event that predates the eutherian radiation. Subsequent gene conversion homogenized the duplications, thereby providing a continuous substrate for NAHR that led to the recurrent inversion of this segment of the genome. These results provide an extreme example in support of the evolutionary breakpoint reusage hypothesis and point out that some near-identical human segmental duplications may, in fact, have originated >100 million years ago.

Page Thumbnails

  • Thumbnail: Page 
18571
    18571
  • Thumbnail: Page 
18572
    18572
  • Thumbnail: Page 
18573
    18573
  • Thumbnail: Page 
18574
    18574
  • Thumbnail: Page 
18575
    18575
  • Thumbnail: Page 
18576
    18576