Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Heat Kernel as the Pagerank of a Graph

Fan Chung
Proceedings of the National Academy of Sciences of the United States of America
Vol. 104, No. 50 (Dec. 11, 2007), pp. 19735-19740
Stable URL: http://www.jstor.org/stable/25450785
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Heat Kernel as the Pagerank of a Graph
Preview not available

Abstract

The concept of pagerank was first started as a way for determining the ranking of Web pages by Web search engines. Based on relations in interconnected networks, pagerank has become a major tool for addressing fundamental problems arising in general graphs, especially for large information networks with hundreds of thousands of nodes. A notable notion of pagerank, introduced by Brin and Page and denoted by PageRank, is based on random walks as a geometric sum. In this paper, we consider a notion of pagerank that is based on the (discrete) heat kernel and can be expressed as an exponential sum of random walks. The heat kernel satisfies the heat equation and can be used to analyze many useful properties of random walks in a graph. A local Cheeger inequality is established, which implies that, by focusing on cuts determined by linear orderings of vertices using the heat kernel pageranks, the resulting partition is within a quadratic factor of the optimum. This is true, even if we restrict the volume of the small part separated by the cut to be close to some specified target value. This leads to a graph partitioning algorithm for which the running time is proportional to the size of the targeted volume (instead of the size of the whole graph).

Page Thumbnails

  • Thumbnail: Page 
19735
    19735
  • Thumbnail: Page 
19736
    19736
  • Thumbnail: Page 
19737
    19737
  • Thumbnail: Page 
19738
    19738
  • Thumbnail: Page 
19739
    19739
  • Thumbnail: Page 
19740
    19740