Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ecological Feedbacks following Deforestation Create the Potential for a Catastrophic Ecosystem Shift in Tropical Dry Forest

Deborah Lawrence, Paolo D'Odorico, Lucy Diekmann, Marcia DeLonge, Rishiraj Das and James Eaton
Proceedings of the National Academy of Sciences of the United States of America
Vol. 104, No. 52 (Dec. 26, 2007), pp. 20696-20701
Stable URL: http://www.jstor.org/stable/25450963
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ecological Feedbacks following Deforestation Create the Potential for a Catastrophic Ecosystem Shift in Tropical Dry Forest
Preview not available

Abstract

The long-term ecological response to recurrent deforestation associated with shifting cultivation remains poorly investigated, especially in the dry tropics. We present a study of phosphorus (P) dynamics in the southern Yucatán, highlighting the possibility of abrupt shifts in biogeochemical cycling resulting from positive feedbacks between vegetation and its limiting resources. After three cultivation-fallow cycles, available soil P declines by 44%, and one-time P inputs from biomass burning decline by 76% from mature forest levels. Interception of dust-borne P ("canopy trapping") declines with lower plant biomass and leaf area, limiting deposition in secondary forest. Potential leaching losses are greater in secondary than in mature forest, but the difference is very small compared with the difference in P inputs. The decline in new P from atmospheric deposition creates a long-term negative ecosystem balance for phosphorus. The reduction in soil P availability will feed back to further limit biomass recovery and may induce a shift to sparser vegetation. Degradation induced by hydrological and biogeochemical feedbacks on P cycling under shifting cultivation will affect farmers in the near future. Without financial support to encourage the use of fertilizer, farmers could increase the fallow period, clear new land, or abandon agriculture for off-farm employment. Their response will determine the regional balance between forest loss and forest regrowth, as well as the frequency of use and rate of recovery at a local scale, further feeding back on ecological processes at multiple scales.

Page Thumbnails

  • Thumbnail: Page 
20696
    20696
  • Thumbnail: Page 
20697
    20697
  • Thumbnail: Page 
20698
    20698
  • Thumbnail: Page 
20699
    20699
  • Thumbnail: Page 
20700
    20700
  • Thumbnail: Page 
20701
    20701