Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Loss of the Inactive Myotubularin-Related Phosphatase Mtmr13 Leads to a Charcot-Marie-Tooth 4B2-Like Peripheral Neuropathy in Mice

Fred L. Robinson, Ingrid R. Niesman, Kristina K. Beiswenger and Jack E. Dixon
Proceedings of the National Academy of Sciences of the United States of America
Vol. 105, No. 12 (Mar. 25, 2008), pp. 4916-4921
Stable URL: http://www.jstor.org/stable/25461522
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Loss of the Inactive Myotubularin-Related Phosphatase Mtmr13 Leads to a Charcot-Marie-Tooth 4B2-Like Peripheral Neuropathy in Mice
Preview not available

Abstract

Charcot-Marie-Tooth disease type 4B (CMT4B) is a severe, demyelinating peripheral neuropathy characterized by slowed nerve conduction velocity, axon loss, and distinctive myelin outfolding and infolding. CMT4B is caused by recessive mutations in either myotubularin-related protein 2 (MTMR2; CMT4B1) or MTMR13 (CMT4B2). Myotubularins are phosphoinositide (PI) 3-phosphatases that dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns(3,5)P₂, two phosphoinositides that regulate endosomal-lysosomal membrane traffic. Interestingly, nearly half of the metazoan myotubularins are predicted to be catalytically inactive. Both active and inactive myotubularins have essential functions in mammals and in Caenorhabditis elegans. MTMR2 and MTMR13 are active and inactive PI 3-phosphatases, respectively, and the two proteins have been shown to directly associate, although the functional significance of this association is not well understood. To establish a mouse model of CMT4B2, we disrupted the Mtmr13 gene. Mtmr13-deficient mice develop a peripheral neuropathy characterized by reduced nerve conduction velocity and myelin outfoldings and infoldings. Dysmyelination is evident in Mtmr13-deficient nerves at 14 days and worsens throughout life. Thus, loss of Mtmr13 in mice leads to a peripheral neuropathy with many of the key features of CMT4B2. Although myelin outfoldings and infoldings occur most frequently at the paranode, our morphological analyses indicate that the ultrastructure of the node of Ranvier and paranode is intact in Mtmr13-deficient nerve fibers. We also found that Mtmr2 levels are decreased by ≈50% in Mtmr13-deficient sciatic nerves, suggesting a mode of Mtmr2 regulation. Mtmr13-deficient mice will be an essential tool for studying how the loss of MTMR13 leads to CMT4B2.

Page Thumbnails

  • Thumbnail: Page 
4916
    4916
  • Thumbnail: Page 
4917
    4917
  • Thumbnail: Page 
4918
    4918
  • Thumbnail: Page 
4919
    4919
  • Thumbnail: Page 
4920
    4920
  • Thumbnail: Page 
4921
    4921