Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Controlling the Efficiency of an Artificial Light-Harvesting Complex

Janne Savolainen, Riccardo Fanciulli, Niels Dijkhuizen, Ana L. Moore, Jürgen Hauer, Tiago Buckup, Marcus Motzkus and Jennifer L. Herek
Proceedings of the National Academy of Sciences of the United States of America
Vol. 105, No. 22 (Jun. 3, 2008), pp. 7641-7646
Stable URL: http://www.jstor.org/stable/25462655
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Controlling the Efficiency of an Artificial Light-Harvesting Complex
Preview not available

Abstract

Adaptive femtosecond pulse shaping in an evolutionary learning loop is applied to a bioinspired dyad molecule that closely mimics the early-time photophysics of the light-harvesting complex 2 (LH2) photosynthetic antenna complex. Control over the branching ratio between the two competing pathways for energy flow, internal conversion (IC) and energy transfer (ET), is realized. We show that by pulse shaping it is possible to increase independently the relative yield of both channels, ET and IC. The optimization results are analyzed by using Fourier analysis, which gives direct insight to the mechanism featuring quantum interference of a low-frequency mode. The results from the closed-loop experiments are repeatable and robust and demonstrate the power of coherent control experiments as a spectroscopic tool (i.e., quantum-control spectroscopy) capable of revealing functionally relevant molecular properties that are hidden from conventional techniques.

Page Thumbnails

  • Thumbnail: Page 
7641
    7641
  • Thumbnail: Page 
7642
    7642
  • Thumbnail: Page 
7643
    7643
  • Thumbnail: Page 
7644
    7644
  • Thumbnail: Page 
7645
    7645
  • Thumbnail: Page 
7646
    7646