Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Cell Surface Targeting of μ-δ Opioid Receptor Heterodimers by RTP4

Fabien M. Décaillot, Raphael Rozenfeld, Achla Gupta and Lakshmi A. Devi
Proceedings of the National Academy of Sciences of the United States of America
Vol. 105, No. 41 (Oct. 14, 2008), pp. 16045-16050
Stable URL: http://www.jstor.org/stable/25464537
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Cell Surface Targeting of μ-δ Opioid Receptor Heterodimers by RTP4
Preview not available

Abstract

μ opioid receptors are G protein-coupled receptors that mediate the pain-relieving effects of clinically used analgesics, such as morphine. Accumulating evidence shows that μ-δ opioid heterodimers have a pharmacologic profile distinct from those of the μ or δ homodimers. Because the heterodimers exhibit distinct signaling properties, the protein and mechanism regulating their levels have significant effects on morphine-mediated physiology. We report the characterization of RTP4, a Golgi chaperone, as a regulator of the levels of heterodimers at the cell surface. We show that the association with RTP4 protects μ-δ receptors from ubiquitination and degradation. This leads to increases in surface heterodimer levels, thereby affecting signaling. Thus, the oligomeric organization of opioid receptors is controlled by RTP4, and this governs their membrane targeting and functional activity. This work is the first report of the identification of a chaperone involved in the regulation of the biogenesis of a family A GPCR heterodimer. The identification of such factors as RTP4 controlling dimerization will provide insight into the regulation of heterodimers in vivo. This has implications in the modulation of pharmacology of their endogenous ligands, and in the development of drugs with specific therapeutic effects.

Page Thumbnails

  • Thumbnail: Page 
16045
    16045
  • Thumbnail: Page 
16046
    16046
  • Thumbnail: Page 
16047
    16047
  • Thumbnail: Page 
16048
    16048
  • Thumbnail: Page 
16049
    16049
  • Thumbnail: Page 
16050
    16050