Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Simple Nonparametric Estimator of a Strictly Monotone Regression Function

Holger Dette, Natalie Neumeyer and Kay F. Pilz
Bernoulli
Vol. 12, No. 3 (Jun., 2006), pp. 469-490
Stable URL: http://www.jstor.org/stable/25464816
Page Count: 22
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Simple Nonparametric Estimator of a Strictly Monotone Regression Function
Preview not available

Abstract

A new method for monotone estimation of a regression function is proposed, which is potentially attractive to users of conventional smoothing methods. The main idea of the new approach is to construct a density estimate from the estimated values m̂(i/N) (i = 1,..., N) of the regression function and to use these 'data' for the calculation of an estimate of the inverse of the regression function. The final estimate is then obtained by a numerical inversion. Compared to the currently available techniques for monotone estimation the new method does not require constrained optimization. We prove asymptotic normality of the new estimate and compare the asymptotic properties with the unconstrained estimate. In particular, it is shown that for kernel estimates or local polynomials the bandwidths in the procedure can be chosen such that the monotone estimate is first-order asymptotically equivalent to the unconstrained estimate. We also illustrate the performance of the new procedure by means of a simulation study.

Page Thumbnails

  • Thumbnail: Page 
[469]
    [469]
  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471
  • Thumbnail: Page 
472
    472
  • Thumbnail: Page 
473
    473
  • Thumbnail: Page 
474
    474
  • Thumbnail: Page 
475
    475
  • Thumbnail: Page 
476
    476
  • Thumbnail: Page 
477
    477
  • Thumbnail: Page 
478
    478
  • Thumbnail: Page 
479
    479
  • Thumbnail: Page 
480
    480
  • Thumbnail: Page 
481
    481
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483
  • Thumbnail: Page 
484
    484
  • Thumbnail: Page 
485
    485
  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490