Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Ridge Analysis with Noise Variables

John J. Peterson and Andrew M. Kuhn
Technometrics
Vol. 47, No. 3 (Aug., 2005), pp. 274-283
Stable URL: http://www.jstor.org/stable/25471021
Page Count: 10
  • Download ($14.00)
  • Cite this Item
Ridge Analysis with Noise Variables
Preview not available

Abstract

Ridge analysis is a graphical and inferential method for exploring optimum factor levels of a response surface at fixed distances from the center of the experimental region. This article proposes an approach to doing a ridge analysis for optimizing a response surface in the presence of noise variables. We extend the ridge analysis method of Peterson to include some of the factors as noise variables. This approach allows an investigator to explore factor combinations that lower the mean squared error about a target value, while at the same time keeping track of how much the mean response differs from the target value. It also allows an investigator to compute a simultaneous confidence band about the root mean squared error about a target value. This provides a guidance band to aid in determining optimal levels of operation. A variety of factor constraints can be imposed, including those found in mixture experiments. In addition, we propose a modification of our approach that can be used for "larger is better" or "smaller is better" experiments. We illustrate the proposed method using two examples, one of which is a mixture experiment.

Page Thumbnails

  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283