Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Reversing Mother's Curse: Selection on Male Mitochondrial Fitness Effects

Michael J. Wade and Yaniv Brandvain
Evolution
Vol. 63, No. 4 (Apr., 2009), pp. 1084-1089
Stable URL: http://www.jstor.org/stable/25483657
Page Count: 6
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Reversing Mother's Curse: Selection on Male Mitochondrial Fitness Effects
Preview not available

Abstract

Many essential organelles and endosymbionts exhibit a strict matrilineal pattern of inheritance. The absence of paternal transmission of such extranuclear components is thought to preclude a response to selection on their effects on male viability and fertility. We overturn this dogma by showing that two mechanisms, inbreeding and kin selection, allow mitochondria to respond to selection on both male viability and fertility. Even modest levels of inbreeding allow such a response to selection when there are direct fitness effects of mitochondria on male fertility because inbreeding associates male fertility traits with mitochondrial matrilines. Male viability effects of mitochondria are also selectable whenever there are indirect fitness effects of males on the fitness of their sisters. When either of these effects is sufficiently strong, we show that there are conditions that allow the spread of mitochondria with direct effects that are harmful to females, contrary to standard expectation. We discuss the implications of our findings for the evolution of organelles and endosymbionts and genomic conflict.

Page Thumbnails

  • Thumbnail: Page 
1084
    1084
  • Thumbnail: Page 
1085
    1085
  • Thumbnail: Page 
1086
    1086
  • Thumbnail: Page 
1087
    1087
  • Thumbnail: Page 
1088
    1088
  • Thumbnail: Page 
1089
    1089