Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Phylogenetic Analysis of the Evolutionary Correlation Using Likelihood

Liam J. Revell and David C. Collar
Evolution
Vol. 63, No. 4 (Apr., 2009), pp. 1090-1100
Stable URL: http://www.jstor.org/stable/25483658
Page Count: 11
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Phylogenetic Analysis of the Evolutionary Correlation Using Likelihood
Preview not available

Abstract

Many evolutionary processes can lead to a change in the correlation between continuous characters over time or on different branches of a phylogenetic tree. Shifts in genetic or functional constraint, in the selective regime, or in some combination thereof can influence both the evolution of continuous traits and their relation to each other. These changes can often be mapped on a phylogenetic tree to examine their influence on multivariate phenotypic diversification. We propose a new likelihood method to fit multiple evolutionary rate matrices (also called evolutionary variance-covariance matrices) to species data for two or more continuous characters and a phylogeny. The evolutionary rate matrix is a matrix containing the evolutionary rates for individual characters on its diagonal, and the covariances between characters (of which the evolutionary correlations are a function) elsewhere. To illustrate our approach, we apply the method to an empirical dataset consisting of two features of feeding morphology sampled from 28 centrarchid fish species, as well as to data generated via phylogenetic numerical simulations. We find that the method has appropriate type I error, power, and parameter estimation. The approach presented herein is the first to allow for the explicit testing of how and when the evolutionary covariances between characters have changed in the history of a group.

Page Thumbnails

  • Thumbnail: Page 
1090
    1090
  • Thumbnail: Page 
1091
    1091
  • Thumbnail: Page 
1092
    1092
  • Thumbnail: Page 
1093
    1093
  • Thumbnail: Page 
1094
    1094
  • Thumbnail: Page 
1095
    1095
  • Thumbnail: Page 
1096
    1096
  • Thumbnail: Page 
1097
    1097
  • Thumbnail: Page 
1098
    1098
  • Thumbnail: Page 
1099
    1099
  • Thumbnail: Page 
1100
    1100