Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Quantum Mechanics, Correlations, and Relational Probability (Mecánica cuántica, correlaciones y probabilidad relacional)

Fernando Birman
Crítica: Revista Hispanoamericana de Filosofía
Vol. 41, No. 121 (Apr., 2009), pp. 3-22
Stable URL: http://www.jstor.org/stable/25511143
Page Count: 20
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Quantum Mechanics, Correlations, and Relational Probability (Mecánica cuántica, correlaciones y probabilidad relacional)
Preview not available

Abstract

This article sets forth and discusses the Ithaca Interpretation of Quantum Mechanics (IIQM). Section 1 presents the standard formalism of quantum mechanics and the measurement problem. Section 2 sketches Everett's interpretation as a preamble to IIQM. Section 3 sets out IIQM's central claim: it is possible to make sense of quantum mechanics by taking as the proper (and only) subject of physics the correlations among subsystems. Section 4 introduces a theorem of quantum mechanics, the SSC theorem, which supports this claim. Section 5 contends that at least two problems exist with IIQM, and one serious objection against it. Section 6 discusses a strategy based on relational probabilities to go around the objection. /// Este artículo presenta y discute la Interpretación de la Mecánica Cuántica de Ithaca (IIQM). La sección 1 expone el formalismo estándar de la mecánica cuántica y el problema de la medición. La sección 2 bosqueja la interpretación de Everett como preámbulo a la IIQM. La sección 3 plantea la tesis central de la IIQM: es posible dar sentido a la mecánica cuántica tomando como sujeto propio (y único) de la física las correlaciones entre subsistemas. La sección 4 expone el teorema SSC de la mecánica cuántica que sustenta esta tesis. En la sección 5 se sostiene que existen al menos dos problemas con la IIQM, y una seria objeción en su contra. Para sortear esta objeción, la sección 6 discute una estrategia basada en probabilidades relacionales.

Page Thumbnails

  • Thumbnail: Page 
[3]
    [3]
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22