Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Evaluation of Methodologies for Small Area Life Expectancy Estimation

D. Eayres and E. S. Williams
Journal of Epidemiology and Community Health (1979-)
Vol. 58, No. 3 (Mar., 2004), pp. 243-249
Published by: BMJ
Stable URL: http://www.jstor.org/stable/25570308
Page Count: 7
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Evaluation of Methodologies for Small Area Life Expectancy Estimation
Preview not available

Abstract

Study objective: To evaluate methods for calculating life expectancy in small areas, for example, English electoral wards. Design: The Monte Carlo method was used to simulate the distribution of life expectancy (and its standard error) estimates for 10 alternative life table models. The models were combinations of Chiang or Silcocks methodology, 5 or 10 year age intervals, and a final age interval of 85+, 90+, or 95+. Setting: A hypothetical small area experiencing the population age structure and age specific mortality rates of English men 1998-2000. Participants: Routine mortality and population statistics for England. Main results: Silcocks and Chiang based models gave similar estimates of life expectancy and its standard error. For all models, life expectancy was increasingly overestimated as the simulated population size decreased. The degree of overestimation depended largely on the final age interval chosen. Life expectancy estimates of small populations are normally distributed. The standard error estimates are normally distributed for large populations but become increasingly skewed as the population size decreases. Substitution methods to compensate for the effect of zero death counts on the standard error estimate did not improve the estimate. Conclusions: It is recommended that a population years at risk of 5000 is a reasonable point above which life expectancy calculations can be performed with reasonable confidence. Implications are discussed. Within the UK, the Chiang methodology and a five year life table to 85+ is recommended, with no adjustments to age specific death counts of zero.

Page Thumbnails

  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249