Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints

P. Bonami and M. A. Lejeune
Operations Research
Vol. 57, No. 3 (May - Jun., 2009), pp. 650-670
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/25614782
Page Count: 21
  • Download ($30.00)
  • Cite this Item
An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints
Preview not available

Abstract

In this paper, we study extensions of the classical Markowitz mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint, which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confidence level. We study the deterministic equivalents of these models. In particular, we define under which types of probability distributions the deterministic equivalents are second-order cone programs and give closed-form formulations. Second, we account for real-world trading constraints (such as the need to diversify the investments in a number of industrial sectors, the nonprofitability of holding small positions, and the constraint of buying stocks by lots) modeled with integer variables. To solve the resulting problems, we propose an exact solution approach in which the uncertainty in the estimate of the expected returns and the integer trading restrictions are simultaneously considered. The proposed algorithmic approach rests on a nonlinear branch-and-bound algorithm that features two new branching rules. The first one is a static rule, called idiosyncratic risk branching, while the second one is dynamic and is called portfolio risk branching. The two branching rules are implemented and tested using the open-source Bonmin framework. The comparison of the computational results obtained with state-of-the-art MINLP solvers (MINLP_BB and CPLEX) and with our approach shows the effectiveness of the latter, which permits to solve to optimality problems with up to 200 assets in a reasonable amount of time. The practicality of the approach is illustrated through its use for the construction of four fund-of-funds now available on the major trading markets.

Page Thumbnails

  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659
  • Thumbnail: Page 
660
    660
  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663
  • Thumbnail: Page 
664
    664
  • Thumbnail: Page 
665
    665
  • Thumbnail: Page 
666
    666
  • Thumbnail: Page 
667
    667
  • Thumbnail: Page 
668
    668
  • Thumbnail: Page 
669
    669
  • Thumbnail: Page 
670
    670