Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Connectivity Measures for Internet Topologies on the Level of Autonomous Systems

Thomas Erlebach, Linda S. Moonen, Frits C. R. Spieksma and Danica Vukadinović
Operations Research
Vol. 57, No. 4 (Jul. - Aug., 2009), pp. 1006-1025
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/25614812
Page Count: 20
  • Download ($30.00)
  • Cite this Item
Connectivity Measures for Internet Topologies on the Level of Autonomous Systems
Preview not available

Abstract

Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is NP-hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.

Page Thumbnails

  • Thumbnail: Page 
1006
    1006
  • Thumbnail: Page 
1007
    1007
  • Thumbnail: Page 
1008
    1008
  • Thumbnail: Page 
1009
    1009
  • Thumbnail: Page 
1010
    1010
  • Thumbnail: Page 
1011
    1011
  • Thumbnail: Page 
1012
    1012
  • Thumbnail: Page 
1013
    1013
  • Thumbnail: Page 
1014
    1014
  • Thumbnail: Page 
1015
    1015
  • Thumbnail: Page 
1016
    1016
  • Thumbnail: Page 
1017
    1017
  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025