Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Adventitious Shoot Formation in Decapitated Dicotyledonous Seedlings Starts with Regeneration of Abnormal Leaves from Cells Not Located in a Shoot Apical Meristem

Sampath Amutha, Krishnan Kathiravan, Sima Singer, Liana Jashi, Ilan Shomer, Benjamin Steinitz and Victor Gaba
In Vitro Cellular & Developmental Biology. Plant
Vol. 45, No. 6 (Nov. - Dec., 2009), pp. 758-768
Stable URL: http://www.jstor.org/stable/25623037
Page Count: 11
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Adventitious Shoot Formation in Decapitated Dicotyledonous Seedlings Starts with Regeneration of Abnormal Leaves from Cells Not Located in a Shoot Apical Meristem
Preview not available

Abstract

Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.

Page Thumbnails

  • Thumbnail: Page 
[758]
    [758]
  • Thumbnail: Page 
759
    759
  • Thumbnail: Page 
760
    760
  • Thumbnail: Page 
761
    761
  • Thumbnail: Page 
762
    762
  • Thumbnail: Page 
763
    763
  • Thumbnail: Page 
764
    764
  • Thumbnail: Page 
765
    765
  • Thumbnail: Page 
766
    766
  • Thumbnail: Page 
767
    767
  • Thumbnail: Page 
768
    768