Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

On Nonobtuse Simplicial Partitions

Jan Brandts, Sergey Korotov, Michal Křížek and Jakub Šolc
SIAM Review
Vol. 51, No. 2 (June 2009), pp. 317-335
Stable URL: http://www.jstor.org/stable/25662286
Page Count: 19
  • Subscribe ($19.50)
  • Cite this Item
On Nonobtuse Simplicial Partitions
Preview not available

Abstract

This paper surveys some results on acute and nonobtuse simplices and associated spatial partitions. These partitions are relevant in numerical mathematics, including piecewise polynomial approximation theory and the finite element method. Special attention is paid to a basic type of nonobtuse simplices called path-simplices, the generalization of right triangles to higher dimensions. In addition to applications in numerical mathematics, we give examples of the appearance of acute and nonobtuse simplices in other areas of mathematics.

Page Thumbnails

  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335