Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

ON GROWTH-COLLAPSE PROCESSES WITH STATIONARY STRUCTURE AND THEIR SHOT-NOISE COUNTERPARTS

OFFER KELLA
Journal of Applied Probability
Vol. 46, No. 2 (JUNE 2009), pp. 363-371
Stable URL: http://www.jstor.org/stable/25662430
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
ON GROWTH-COLLAPSE PROCESSES WITH STATIONARY STRUCTURE AND THEIR SHOT-NOISE COUNTERPARTS
Preview not available

Abstract

In this paper we generalize existing results for the steady-state distribution of growth-collapse processes. We begin with a stationary setup with some relatively general growth process and observe that, under certain expected conditions, point- and time-stationary versions of the processes exist as well as a limiting distribution for these processes which is independent of initial conditions and necessarily has the marginal distribution of the stationary version. We then specialize to the cases where an independent and identically distributed (i.i.d.) structure holds and where the growth process is a nondecreasing Lévy process, and in particular linear, and the times between collapses form an i.i.d. sequence. Known results can be seen as special cases, for example, when the inter-collapse times form a Poisson process or when the collapse ratio is deterministic. Finally, we comment on the relation between these processes and shot-noise type processes, and observe that, under certain conditions, the steady-state distribution of one may be directly inferred from the other.

Page Thumbnails

  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371