Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Evolutionary dynamics of Clostridium difficile over short and long time scales

Miao He, Mohammed Sebaihia, Trevor D. Lawley, Richard A. Stabler, Lisa F. Dawson, Melissa J. Martin, Kathryn E. Holt, Helena M.B. Seth-Smith, Michael A. Quail, Richard Rance, Karen Brooks, Carol Churcher, David Harris, Stephen D. Bentley, Christine Burrows, Louise Clark, Craig Corton, Vicky Murray, Graham Rose, Scott Thurston, Andries van Tonder, Danielle Walker, Brendan W. Wren, Gordon Dougan, Julian Parkhill and Rino Rappuoli
Proceedings of the National Academy of Sciences of the United States of America
Vol. 107, No. 16 (April 20, 2010), pp. 7527-7532
Stable URL: http://www.jstor.org/stable/25665386
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Evolutionary dynamics of Clostridium difficile over short and long time scales
Preview not available

Abstract

Clostridium difficile has rapidly emerged as the leading cause of antibiotic-associated diarrheal disease, with the transcontinental spread of various PCR ribotypes, including 001, 017, 027 and 078. However, the genetic basis for the emergence of C. difficile as a human pathogen is unclear. Whole genome sequencing was used to analyze genetic variation and virulence of a diverse collection of thirty C. difficile isolates, to determine both macro and microevolution of the species. Horizontal gene transfer and large-scale recombination of core genes has shaped the C. difficile genome over both short and long time scales. Phylogenetic analysis demonstrates C. difficile is a genetically diverse species, which has evolved within the last 1.1–85 million years. By contrast, the disease-causing isolates have arisen from multiple lineages, suggesting that virulence evolved independently in the highly epidemic lineages.

Page Thumbnails

  • Thumbnail: Page 
[7527]
    [7527]
  • Thumbnail: Page 
7528
    7528
  • Thumbnail: Page 
7529
    7529
  • Thumbnail: Page 
7530
    7530
  • Thumbnail: Page 
7531
    7531
  • Thumbnail: Page 
7532
    7532