Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Sediment Characterization and Dynamics in Lake Pontchartrain, Louisiana

James Flocks, Jack Kindinger, Marci Marot and Charles Holmes
Journal of Coastal Research
SPECIAL ISSUE NO. 54. Geologic and Environmental Dynamics of the Pontchartrain Basin (FALL 2009), pp. 113-126
Stable URL: http://www.jstor.org/stable/25737473
Page Count: 14
  • Read Online (Free)
  • Download ($20.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Sediment Characterization and Dynamics in Lake Pontchartrain, Louisiana
Preview not available

Abstract

Lake Pontchartrain in southeastern Louisiana is the largest of several shallow estuaries that together cover over 15,000 km². Wetlands, forests, and large urban areas surround the lake. Primary transport mechanisms of sediments to Lake Pontchartrain include urban runoff, major diversions of the Mississippi River, discharge from streams along the north and west shores, and tidal circulation. Sediments deposited in Lake Pontchartrain are subjected to resuspension and mixing by natural and human activities. Bioturbation and water turbulence throughout the lake are the major mixing agents, and mechanical shell dredging has reworked much of the lake bottom over the last century. Sediment characterization through direct sampling and geophysical surveys indicates that these processes continually rework the top meter of sediment. The lake receives discharge from roadways and industrial and agricultural sources. Contaminants from these sources accumulate in the lake sediments and are an important contributor to the degradation of the estuary. Decline in populations of various benthic organisms, such as shrimp and clams, has been documented in the lake. To characterize the health of this important estuary, the U.S. Geological Survey (USGS) conducted a comprehensive evaluation of the geology, geomorphology, coastal processes, and environmental condition of the Pontchartrain Basin from 1994 to 1997. This report presents an assessment of sediment distribution and quality using a multidisciplinary approach to characterize the influence of various physical and chemical parameters: nearsurface stratigraphy, major trace metal concentrations (Cu, Pb, Zn, and Ni), and short-lived radionuclides (²¹⁰Pb, ⁷Be, and ¹³⁷Cs). The results are compared with water-circulation patterns to determine high-resolution sedimentation patterns in the lake. The data show a significant increase in trace metals in the top 1 m of lake sediments. Above this horizon, pollen analysis indicates a correlation with land clearing in the area, a proxy for increasing human development of the surrounding landscape and an increase in surface run-off. The data also show that the top meter of sediment undergoes frequent resuspension during high-energy circulation events and via circulation gyres in the lake. This regular turnover does not allow stratification of recently deposited sediments, restricting the sequestration of contaminated material that enters the lake.

Page Thumbnails

  • Thumbnail: Page 
[113]
    [113]
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126