Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota)

David M. Spooner, Tatjana Gavrilenko, Shelley H. Jansky, A. Ovchinnikova, E. Krylova, Sandra Knapp and Reinhard Simon
American Journal of Botany
Vol. 97, No. 12 (December 2010), pp. 2049-2060
Stable URL: http://www.jstor.org/stable/25766878
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota)
Preview not available

Abstract

Premise of the study: The taxonomy of cultivated potatoes has been highly controversial, with estimates of species numbers ranging from 3 to 17. Ploidy level has been one of the most important taxonomic characters to recognize cultivated potato species, containing diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), and pentaploid (2n = 5x = 60) cultivars. We tested the environmental associations of different ploidy levels in cultivated potato species that traditionally have been recognized as Linnaean taxa to see whether, in combination with prior morphological, molecular, and crossing data, some of the ploidy variants can be recognized as distinct taxa. Methods: We summarize 2780 chromosome counts of landrace cultivated potatoes, provide georeferences to 2048 of them, and analyze these data for 20 environmental variables at 10-min resolution using the randomForest algorithm to explore associations with taxa and ploidy variants. Key results: Except for the S. tuberosum Chilotanum Group and extreme northern and southern range extensions of the Andigenum Group, it is impossible to find distinct habitats for the ploidy variants of the S. tuberosum Andigenum Group. Conclusions: Our distributional and ecological data, in combination with prior results from morphology, microsatellites, and crossing data, provide yet additional data to support a major reclassification of cultivated potato species. A rational, stable, and universally accepted taxonomy of this major crop plant will greatly aid all users of wild and cultivated potatoes from breeders to gene bank managers to ecologists and evolutionary biologists.

Page Thumbnails

  • Thumbnail: Page 
2049
    2049
  • Thumbnail: Page 
2050
    2050
  • Thumbnail: Page 
2051
    2051
  • Thumbnail: Page 
2052
    2052
  • Thumbnail: Page 
2053
    2053
  • Thumbnail: Page 
2054
    2054
  • Thumbnail: Page 
2055
    2055
  • Thumbnail: Page 
2056
    2056
  • Thumbnail: Page 
2057
    2057
  • Thumbnail: Page 
2058
    2058
  • Thumbnail: Page 
2059
    2059
  • Thumbnail: Page 
2060
    2060