Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Mixed Logit Models for Multiparty Elections

Garrett Glasgow
Political Analysis
Vol. 9, No. 2 (Spring 2001), pp. 116-136
Stable URL: http://www.jstor.org/stable/25791636
Page Count: 21
  • Download ($42.00)
  • Cite this Item
Mixed Logit Models for Multiparty Elections
Preview not available

Abstract

Mixed logit (MXL) is a general discrete choice model thus far unexamined in the study of multicandidate and multiparty elections. Mixed logit assumes that the unobserved portions of utility are a mixture of an IID extreme value term and another multivariate distribution selected by the researcher. This general specification allows MXL to avoid imposing the independence of irrelevant alternatives (IIA) property on the choice probabilities. Further, MXL is a flexible tool for examining heterogeneity in voter behavior through random-coefficients specifications. MXL is a more general discrete choice model than multinomial probit (MNP) in several respects, and can be applied to a wider variety of questions about voting behavior than MNP. An empirical example using data from the 1987 British General Election demonstrates the utility of MXL in the study of multicandidate and multiparty elections.

Page Thumbnails

  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136