Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade

Stephen F. Price, Antony J. Payne, Ian M. Howat and Benjamin E. Smith
Proceedings of the National Academy of Sciences of the United States of America
Vol. 108, No. 22 (May 31, 2011), pp. 8978-8983
Stable URL: http://www.jstor.org/stable/25831073
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
Preview not available

Abstract

We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland's three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, >75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.

Page Thumbnails

  • Thumbnail: Page 
[8978]
    [8978]
  • Thumbnail: Page 
8979
    8979
  • Thumbnail: Page 
8980
    8980
  • Thumbnail: Page 
8981
    8981
  • Thumbnail: Page 
8982
    8982
  • Thumbnail: Page 
8983
    8983