Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the No-Counterexample Interpretation

Ulrich Kohlenbach
The Journal of Symbolic Logic
Vol. 64, No. 4 (Dec., 1999), pp. 1491-1511
DOI: 10.2307/2586791
Stable URL: http://www.jstor.org/stable/2586791
Page Count: 21
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the No-Counterexample Interpretation
Preview not available

Abstract

In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals ΦA of order type < ε0 which realize the Herbrand normal form AH of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do not carry out the no-counterexample interpretation as a local proof interpretation and don't respect the modus ponens on the level of the no-counterexample interpretation of formulas A and A → B. Closely related to this phenomenon is the fact that both proofs do not establish the condition (δ) and--at least not constructively-- (γ) which are part of the definition of an 'interpretation of a formal system' as formulated in [15]. In this paper we determine the complexity of the no-counterexample interpretation of the modus ponens rule for (i) PA-provable sentences, (ii) for arbitrary sentences A, B ∈ L(PA) uniformly in functionals satisfying the no-counterexample interpretation of (prenex normal forms of) A and A → B, and (iii) for arbitrary A, B ∈ L(PA) pointwise in given α(<ε0) -recursive functionals satisfying the no-counterexample interpretation of A and A → B. This yields in particular perspicuous proofs of new uniform versions of the conditions (γ), (δ). Finally we discuss a variant of the concept of an interpretation presented in [17] and show that it is incomparable with the concept studied in [15], [16]. In particular we show that the no-counterexample interpretation of PAn by α(< ωn(ω))-recursive functionals (n ≥ 1) is an interpretation in the sense of [17] but not in the sense of [15] since it violates the condition (δ).

Page Thumbnails

  • Thumbnail: Page 
1491
    1491
  • Thumbnail: Page 
1492
    1492
  • Thumbnail: Page 
1493
    1493
  • Thumbnail: Page 
1494
    1494
  • Thumbnail: Page 
1495
    1495
  • Thumbnail: Page 
1496
    1496
  • Thumbnail: Page 
1497
    1497
  • Thumbnail: Page 
1498
    1498
  • Thumbnail: Page 
1499
    1499
  • Thumbnail: Page 
1500
    1500
  • Thumbnail: Page 
1501
    1501
  • Thumbnail: Page 
1502
    1502
  • Thumbnail: Page 
1503
    1503
  • Thumbnail: Page 
1504
    1504
  • Thumbnail: Page 
1505
    1505
  • Thumbnail: Page 
1506
    1506
  • Thumbnail: Page 
1507
    1507
  • Thumbnail: Page 
1508
    1508
  • Thumbnail: Page 
1509
    1509
  • Thumbnail: Page 
1510
    1510
  • Thumbnail: Page 
1511
    1511