Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Finite Element Method for the Neutron Transport Equation in an Infinite Cylindrical Domain

Mohammad Asadzadeh
SIAM Journal on Numerical Analysis
Vol. 35, No. 4 (Aug., 1998), pp. 1299-1314
Stable URL: http://www.jstor.org/stable/2587178
Page Count: 16
  • More info
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A Finite Element Method for the Neutron Transport Equation in an Infinite Cylindrical Domain
Preview not available

Abstract

We study the spatial discretization, in a fully discrete scheme, for the numerical solution of a model problem for the neutron transport equation in an infinite cylindrical domain. Based on using an interpolation technique in the discontinuous Galerkin finite element procedure, we derive an almost optimal error estimate for the scalar flux in the L2-norm. Combining a duality argument applied to the above result together with the previous semidiscrete error estimates for the velocity discretizations, we also obtain globally optimal error bounds for the critical eigenvalues.

Page Thumbnails

  • Thumbnail: Page 
1299
    1299
  • Thumbnail: Page 
1300
    1300
  • Thumbnail: Page 
1301
    1301
  • Thumbnail: Page 
1302
    1302
  • Thumbnail: Page 
1303
    1303
  • Thumbnail: Page 
1304
    1304
  • Thumbnail: Page 
1305
    1305
  • Thumbnail: Page 
1306
    1306
  • Thumbnail: Page 
1307
    1307
  • Thumbnail: Page 
1308
    1308
  • Thumbnail: Page 
1309
    1309
  • Thumbnail: Page 
1310
    1310
  • Thumbnail: Page 
1311
    1311
  • Thumbnail: Page 
1312
    1312
  • Thumbnail: Page 
1313
    1313
  • Thumbnail: Page 
1314
    1314