Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Lower Bounds for the Hub Location Problem

Morton O'Kelly, Darko Skorin-Kapov and Jadranka Skorin-Kapov
Management Science
Vol. 41, No. 4 (Apr., 1995), pp. 713-721
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2632890
Page Count: 9
  • Download ($30.00)
  • Cite this Item
Lower Bounds for the Hub Location Problem
Preview not available

Abstract

We present a new lower bound for the Hub Location Problem (HLP) where distances satisfy the triangle inequality. Our lower bound is based on a linearization of the problem and its modification obtained by incorporating the knowledge of a known heuristic solution. A lower bound was computed for some standard data sets from the literature ranging between 10 and 25 nodes, with 2, 3, and 4 hubs, and for different values for the parameter a, representing the discount for the flow between hubs. The novel approach of using a known heuristic solution to derive a lower bound in all cases reduced the difference between the upper and lower bound. This difference measures the quality of the best known heuristic solution in percentages above the best lower bound. As a result of this research, for smaller problems (all instances with 10 and 15 nodes) the average difference is reduced to 3.3%. For larger sets (20 and 25 nodes) the average difference is reduced to 5.9%.

Page Thumbnails

  • Thumbnail: Page 
713
    713
  • Thumbnail: Page 
714
    714
  • Thumbnail: Page 
715
    715
  • Thumbnail: Page 
716
    716
  • Thumbnail: Page 
717
    717
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721