Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Evolution of Diapause in the Killifish Family Rivulidae (Atherinomorpha, Cyprinodontiformes): A Molecular Phylogenetic and Biogeographic Perspective

Tomas Hrbek and Allan Larson
Evolution
Vol. 53, No. 4 (Aug., 1999), pp. 1200-1216
DOI: 10.2307/2640823
Stable URL: http://www.jstor.org/stable/2640823
Page Count: 17
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Evolution of Diapause in the Killifish Family Rivulidae (Atherinomorpha, Cyprinodontiformes): A Molecular Phylogenetic and Biogeographic Perspective
Preview not available

Abstract

Phylogenetic relationships within the family Rivulidae (order Cyprinodontiformes) are investigated using 1972 aligned base pairs of mitochondrial DNA (mtDNA) for samples representing 66 species. Genes analyzed include those encoding the 12S ribosomal RNA; transfer RNAs for valine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; complete NADH dehydrogenase subunit II; and part of cytochrome oxidase I. Parsimony analysis of the aligned mtDNA sequences results in a single most parsimonious tree. The phylogeny reveals two independent origins of developmental diapause within the family Rivulidae. It is unlikely that diapause evolved de novo in each group. suggesting that the presence or absence of diapause is the result of developmental switches between alternative stabilized pathways. Phylogeny of the family Rivulidae shows high concordance with predictions derived from the geological history of South America and Central America. Basal lineages in the rivulid phylogeny are distributed primarily on geologically old areas, whereas more nested lineages occur in geologically younger areas. However, there is little concordance between the molecular phylogeny and currently available morphological hypotheses and existing taxonomies. Based on the mtDNA phylogeny, the genera Pterolebias, Rivulus, Pituna, and Plesiolebias are considered nonmonophyletic and warrant taxonomic reassessment.

Page Thumbnails

  • Thumbnail: Page 
1200
    1200
  • Thumbnail: Page 
1201
    1201
  • Thumbnail: Page 
1202
    1202
  • Thumbnail: Page 
1203
    1203
  • Thumbnail: Page 
1204
    1204
  • Thumbnail: Page 
1205
    1205
  • Thumbnail: Page 
1206
    1206
  • Thumbnail: Page 
1207
    1207
  • Thumbnail: Page 
1208
    1208
  • Thumbnail: Page 
1209
    1209
  • Thumbnail: Page 
1210
    1210
  • Thumbnail: Page 
1211
    1211
  • Thumbnail: Page 
1212
    1212
  • Thumbnail: Page 
1213
    1213
  • Thumbnail: Page 
1214
    1214
  • Thumbnail: Page 
1215
    1215
  • Thumbnail: Page 
1216
    1216